Reducing Pedestrian's Exposure to Traffic-Related Air Pollution through Route Choice Decision

2016 International Conference on Transport & Health

UCR College of Engineering- Center for Environmental Research & Technology

Jill Luo - jluo006@ucr.edu Kanok Boriboonsomsin, Matthew Barth

Outline

- Introduction
- Objective
- Method of PM2.5 modeling
- Sidewalk characterization and routing
- Routing results
- Discussion

Introduction

- Riverside City Walkability Improvement Project
- Model mobile-source fine particle concentration within the neighborhoods
- Promote walking and reduce pedestrians' exposure to mobilesource pollutant

Neighborhoods in the City of Riverside, California Point A: weather station, Point B: air quality measurement station

Peer research

An illustration of concentration upwind and downwind a roadway

Roadside measurements reveal that concentration of traffic emissions are elevated near roadways (Zhu *et al.*, 2006; Hu *et al.* 2009, 2012)

Pedestrians and cyclists face risks of higher exposure to traffic emissions. Exposure duration, breathing rate are both high. (O'Donoghue *et al.*, 2007; Briggs *et al.* 2008; Morabia *et al.* 2009)

Neighborhoods in the City of Riverside, California

Objective

Apply a modeling method to calculate averaged mobile-source PM2.5 concentration distribution for morning and afternoon periods.

Using the PM2.5 map, can route choice decisions help reduce pedestrian's exposure to traffic-related air pollution?

Three walking route options for a home-to-school trip in Riverside

Method of PM2.5 modeling

Transportation EMFAC2011 Analysis Model

Map of traffic activity

Total flow (vehicles per hour) for morning periods.

Map of PM2.5 concentration

Mobile-source PM2.5 concentration in the morning

Map of PM2.5 concentration

Mobile-source PM2.5 concentration in the afternoon

Contrast between roadway map (a) and sidewalk map (b) for pedestrian routing

a section of paved sidewalk (blue line)

a section of landscape/lawn sidewalk (green line)

a crosswalk (coral line)

Digital sidewalk categories defined by the author

a section of driveway/parking-lot (purple line)

a missing sidewalk (red line)

$$h \qquad [n] = \qquad \begin{bmatrix} 1 \\ - \end{bmatrix} \qquad [h] \qquad [h] \qquad h \qquad \begin{bmatrix} 1 \\ - \end{bmatrix}$$

Routing experiments

Location of homes and amenities used in route choice evaluation

An example trip

Time Period	Morning	Afternoon
Walking time increase	1%	0.3%
PM2.5 Inhale Mass decrease	72%	92%

Statistics of routing results

Analysis Period	Trips under 30 minutes	Improved Trips		PM _{2.5} Exposure Reduction (%)		Walking Duration Increase (%)			
		Trips	%	Max	Median	Mean	Max	Median	Mean
Morning	7223	367	5.1	84.4	5.2	13.8	16.8	0.04	0.5
Afternoon	7223	697	9.6	98.2	17.7	32.0	45.0	0.1	1.1

Reduction in PM_{2.5} exposure versus increase in walking duration for improved trips

Conclusions and discussion

A low exposure route could be found for 5.1% of the walking trips in the morning, and 9.6% of the trips in the afternoon.

On average, the low exposure routes would reduce the pedestrian exposure to $PM_{2.5}$ during the morning period by 24% while increasing the walking duration by only 1%.

During the afternoon period, the low exposure routes would reduce the pedestrian exposure to $PM_{2.5}$ by an average of 32.0% while increasing the walking duration by 1.1% on average.

Digital sidewalk network improves the reliability of pedestrian routing.

Future improvements

Collect real-time meteorology and traffic activities, develop the real-time mobile-source pollutant modeling system.

Validate modeling results with instrumental measurements.

Automate sidewalk digitization process.

Apply the digital sidewalk system to support safe routes calculation for active travelers. For example, a route with more paved sidewalk sections.

Acknowledgments

California Department of Transportation

County of Riverside

Riverside Transit Agency